水库水利计算毕业设计

沅水五强溪水库水利计算目录1基本情况

3.11流域概况

3.12开发任务

3.13设计任务

4.14设计前提

4.15设计内容

5.16设计原始资料52兴利计算10

2.1基本资料整理10

2.2死水位的确定10

2.3保证出力计算1

3.24水电站必需容量选择1

5.25水电站调度图绘制1

6.26重复容量选择与多年平均电能计算203防洪计算2

4.31水库调洪计算2

4.32坝顶高程的确定264经济计算2

9.41方案一工程费用2

9.42其它方案工程费

3.243防洪效益3

9.44经济比较40附表45附图701基本情况

1.1流域概况五强溪水电站位于湖南省沅陵县境内,上离沅陵县城73km,下距常德市130km。坝址控制流域面积83800km2,占沅水总流域面积的93%,流域雨量充沛,水量丰富,坝址多年平均流量2060m3/s,年水量649108m3,并有1925年以来的水文资料和核实的历史洪水资料。坝址位于沅水干流最后一段峡谷出口处,岩性坚硬,地形地质条件良好。具备了修筑高坝的自然条件。在沅水规划中,五强溪水电站为沅水干流最后第二个梯级,上游接虎皮溪及酉水的风滩(已建成)梯级,是一个以发电为主,兼有防洪、航运效益的综合利用水库,系湖南省最大的水电电源点。

1.2开发任务五强溪水电站是以发电为主、兼有防洪、航运和灌溉等效益的综合利用工程。其开发任务分述如下:1发电五强溪水电站建成后投入华中电网,主要供电范围为湖南省。2防洪沅水下游赤山以西的桃源、常德、汉寿三县及常德市所属平原河网地区,统称沅水尾闾。这个地区地势低洼。全靠提防保护,共保护人口106万,农水159万亩。现有河道的泄洪能力20000m3/s,如遇192

7、193

1、193

3、193

5、194

3、194

9、195

4、1969等年洪水重现,河道均不能完全承泄,防洪标准仅为5年一遇。五强溪水库靠近沅水尾闾,控制全流域面积的93%,解决尾闾防洪问题,是它的基本防洪任务。3航运五强溪水电站的航运效益为改善水库区和坝下游河道的通航条件。沅水是湘西的水上交通动脉,其干流全长1550km,通航里程为640km,但航道险滩很多。五强溪水库修建以后,坝址以上,沅水以下河段成为常年深水区,其险滩都将淹没。下游航道,确定五强溪航运基荷按10万kw相应流量考虑,枯水流量加大,上、下游航道均可改善。4灌溉每年自5月下旬至9月下旬为灌溉季节,在该季节自水库上游直接引走的灌溉流量平均为35m3/s。

1.3设计任务本次设计任务是对五强溪水电站的诸方案(即正常蓄水位)已给的情况下,进行水库的兴利与防洪计算,确定各方案水利设备的参数,水库的调节操作方式及计算水利指标,并通过经济分析,比较方案之优劣。

1.4设计前提1本水利枢纽是以发电、防洪为主要目标的综合利用水库;2水电站参加系统工作,发电设计保证率P=

8.75%(按年份计);3水电站的备选方案(正常蓄水位)见表

1.1;表

1.1备选方案正常蓄水位表方案正常蓄水位(m)120XXXX1004本水利枢纽根据国家规定属一级,以千年一遇洪水为设计标准,万年一遇洪水为校核标准,电站使用年限为50年计;5水库库区蒸发渗漏等水量损失不大,故在初步设计阶段暂时不考虑;6水库下游有防洪要求,设计标准为二十年一遇洪水,安全泄洪流量q安=20000m3/s。

1.5设计内容1水电站死水位选择及保证出力NP计算;2水电站装机容量选择;3绘制水电站调度图的防破坏线,加大出力辅助线,确定汛期限制水位;4求重复容量,计算水电站多年平均电能;5进行防洪计算,确定各种防洪特征水位及坝顶高程;6求水利指标;7经济计算,比较方案优劣。

1.6设计原始资料1坝址以上流域面积F=83800km2;2坝址断面历年月平均流量资料(见附表一);3水库水位面积、库容曲线见表

1.2;4坝址下游水位流量关系曲线见表

1.3;5为改善下游通航条件,确定五强溪航运基荷按10kw计;6船闸操作需要耗用10m3/s,此部分流量不能用来发电;表

1.2水库水位面积、库容曲线表高程(m)5060XXX140面积(km2)0

7.240

20.5033

9.491

6.49881

1.11841

8.79152

9.72884

6.2

9.876XXXX7004容积108m300.2

4.115

9.24521

3.96

9.218490

3.334

6.57349

9.50581

5.1578m3/s.月0

9.17560.651

7.2133

5.9070

3.9612

5.95721

8.3433

6.191XXXX5770.97表

1.3坝址下游水位流量关系曲线表水位m流量m3/s水位m流量m3/s水位m流量m3/s水位m流量m3/s

4.85204

5.3033

5.759470

6.XXX

3.90350

5.353360

5.XXX

6.XXX

3.9554

5.54044

4.XXX

6.802XXXX0050.07

9.554XXXX4060.013700

5.903XXXX0050.511

5.5057

6.101XXXX0070.033800

5.101490

5.556450

6.XXX

7.XXX

5.151900

5.607200

6.XXX

7.XXX

5.202450

5.657950

6.XXX

7.XXX

5.2528

5.709700

6.XXX

7.404XXXX4007每年5月下旬至9月下旬为灌溉季节,在该季节自水库上游直接引走的灌溉流量平均为

3.50m3/s,此部分流量亦不能用来发电;8在沅水规划中,五强溪水电站上游将干流的虎皮溪及酉水的风滩(已建成)梯级,其尾水水位124m及1

1.42m,各正常蓄水位方案对上游风滩的影响见表

1.4;表

1.4各正常蓄水位方案对上游风滩的影响方案(正常蓄水位)(120m)(115m)(108m)(100m)减少风滩N(kw)0.2840.0200E(亿kw.h)0.XXX沅水尾闾洪灾情况、洞庭湖分分蓄洪提防基本情况见表

1.

5、

1.6;表

1.5沅水尾闾历年洪灾情况年份常德最大流量(m3/s)洪灾情况192XXXX4800酉水特大洪水,尾闾未见灾情记载193XXXX9700尾闾淹田100万亩,淹死3049人193XXXX0400桃源淹田

1.14万亩,汉寿受灾

1.15万人193XXXX9900尾闾淹田93万亩,淹死3430人193XXXX0600黔阳淹5万余亩,尾闾未见灾情记载194XXXX8600沅陵、桃源灾情较重,常德、汉寿未见灾情记载194XXXX4700尾闾淹田71万亩,受灾35万人195XXXX4300尾闾淹田73万亩196XXXX7300尾闾淹田

4.7万亩,受灾

3.3万人197XXXX2900安江一带灾情严重,尾闾无灾197XXXX1700表

1.6历年较大洪水所需拦洪量单位:108m3年份193XXXX935XXXX9196XXXX970XXXX1938拦洪量

1.5

2.136

10.1待算

6.5.6

2.2

3.11380.3110五强溪水库入库设计洪水过程线(见附表二);11水库最大吹程15km,设计风速12km/s;12各方案泄洪建筑物参数见表

1.7;表

1.7各方案泄洪建筑物参数表方案泄洪建筑物(120m)(115m)(108m)(100m)溢洪坝孔数101XXXX1214坝顶高程(m)108XXXX9484孔口尺寸(宽高)151XXXXXXX中孔孔数1110底坎高程(m)XXX孔口尺寸(宽高)138XXXX8013经济预算资料:

(1)永久建筑物(含闸门设备):包括:拦河坝、水道厂房、航道建筑、鱼道建筑、交通建筑、房屋建筑及其他。坝底高程30m。各方案投资估算见表

1.8。表

1.8各方案投资估算表(枢纽土建)最大坝高(m)104

9.45

8.75

7.85投资估算(万元)61850563XXXX1721019

(2)机电设备各方案投资估算见表

1.9。表

1.9各方案投资估算表(机电设备)装机容量(万瓦)175XXXX1092机电投资估算(万元)288XXXX8125XXXX8190

(3)各方案的临时工程、其他工程和费用(包括施工机械、其他费用)、预备费用各方案投资估算见表

1.10。表

1.10各方案投资估算表(其它费用)方案(120m)(115m)(108m)(100m)投资(万元)7133XXXX628XXXX6028

(4)水库补偿(移民及淹没补偿)各方案投资估算见表

1.11。表

1.11各方案投资估算表(补偿费用)方案(120m)(115m)(108m)(100m)补偿费(万元)800XXXX9338547XXXX8914泥沙资料坝址多年平均含沙量0.258kg/m3,多年平均输沙率513kg/s,风滩建库后,五强溪坝址多年含沙量0.19kg/m3,年淤积669万m3。2兴利计算沅水五强溪水电站水库正常蓄水位共有120m、115m、108m、100m四个方案,本次设计将对这四个方案进行比较,并选定最优方案。

2.1基本资料整理设计原始资料给定的流量是坝址断面历年平均流量,考虑工程实际,现对其平均流量(附表一)数据进行处理:扣除灌溉和船闸用水。灌溉用水按5月下旬至9月下旬的灌溉季节每月扣除35m3/s(5月扣除

1.17m3/s,

七、八月扣除35m3/s,9月扣除

2.23m3/s);船闸运行用水按每月10m3/s的流量扣除,从而得到新的年平均发电流量表(附表三)。

2.2死水位的确定死水位影响因素比较复杂,需考虑保证水库灌溉要求、满足泥沙淤积要求、保证水电站最低水头要求以及航运、养殖等其它要求。本次设计对死水位的确定采用简化处理的办法,主要考虑水库的使用寿命及泥沙淤积;灌溉、航运、养殖及旅游等综合利用要求;水轮机最小水头的限制三个因素。各方案分述如下:

2.2.1正常蓄水位120m方案(方案一)1水库的使用寿命及泥沙淤积使用寿命T按50年计,年淤积量V年为669万m3V淤=V年T=66950=33450万m3查库容水位曲线表,确定水库在使用年限内满足防淤要求的死水位Z1=

7.620m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于Z2=

8.200m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头的35%。

(1)任意假定最小发电流量q(0),并相应下游Z下(0)。最小发电流量取q(0)=800m3/s,查表得下游水位Z下(0)=50.05m。

(2)极限削落深度hm=(Z正Z下(0)35%=(12050.05)35%=

2.448m死水位:Z3=Z正hm=1

2.448=

9.552m

(3)Z死(0)=ma_(Z1,Z2,Z3)=ma_

7.680,

8.200,

9.552)=

9.552m;

(4)根据Z3(0)长系列计算各年供水期调节流量qp=7

8.928m3/s,并满足|q(0)qp|=0.72m3/s=1m3/s,则Z死=Z死(0)=

9.552m。即死水位为

9.552m,相应死库容

1.4002亿m3。

2.2.2正常蓄水位115m方案(方案二)1水库的使用寿命及泥沙淤积水库在使用年限内满足防淤要求的死水位Z1=

7.620m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于Z2=

8.200m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头的35%。

(1)任意假定最小发电流量q(0),并相应下游Z下(0)。最小发电流量取q(0)=733m3/s,查表得下游水位Z下(0)=

3.988m。

(3)极限削落深度hm=(Z正Z下(0)35%=(11

5.3988)35%=

2.279m死水位:Z3=Z正hm=11

5.2279=

9.221m

(3)Z死(0)=ma_(Z1,Z2,Z3)=ma_

7.680,

8.200,

9.221)=

9.221m;

(4)根据Z3(0)长系列计算各年供水期调节流量qp=

7.3308m3/s,并满足|q(0)qp|=0.08m3/s=1m3/s,则Z死=Z死(0)=

9.221m。即死水位为

9.221m,相应死库容

1.1353亿m3。

2.2.3正常蓄水位108m方案(方案三)1水库的使用寿命及泥沙淤积水库在使用年限内满足防淤要求的死水位Z1=

7.620m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于Z2=

8.200m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头的35%。

(1)任意假定最小发电流量q(0),并相应下游Z下(0)。最小发电流量取q(0)=644m3/s,查表得下游水位Z下(0)=

3.970m。

(4)极限削落深度hm=(Z正Z下(0)35%=(10

8.3970)35%=

20.41m死水位:Z3=Z正hm=108

20.41=

8.759m

(3)Z死(0)=ma_(Z1,Z2,Z3)=ma_

7.680,

8.200,

8.759)=

8.759m;

(4)根据Z3(0)长系列计算各年供水期调节流量qp=

6.4432m3/s,并满足|q(0)qp|=0.32m3/s=1m3/s,则Z死=Z死(0)=

8.759m。即死水位为

8.759m,相应死库容

8.346亿m3。

2.2.4正常蓄水位100m方案(方案四)1水库的使用寿命及泥沙淤积水库在使用年限内满足防淤要求的死水位Z1=

7.620m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于Z2=

8.200m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头的35%。

(1)任意假定最小发电流量q(0),并相应下游Z下(0)。最小发电流量取q(0)=568m3/s,查表得下游水位Z下(0)=

3.955m。

(5)极限削落深度hm=(Z正Z下(0)35%=(100

3.955)35%=

1.766m死水位:Z3=Z正hm=100

1.766=

8.234m

(3)Z死(0)=ma_(Z1,Z2,Z3)=ma_

7.680,

8.200,

8.234)=

8.234m;

(4)根据Z3(0)长系列计算各年供水期调节流量qp=5

6.779m3/s,并满足|q(0)qp|=0.21m3/s=1m3/s,则Z死=Z死(0)=

8.234m。即死水位为

8.234m,相应死库容

5.55亿m3。

2.3保证出力计算本次设计要求长系列等出力操作;用试算法逐年求解以下方程组:Vt=Vt-1 (Qtqt)tNp=KqtHtV0=V死Vt-I,Vtt时段初、末水库蓄水量;Qtt时段平均入库流量(新系列);qtt时段平均发电流量;Htt时段平均水头;Vt供水期末水库蓄水量。

2.3.1计算方法对某一特定年份求解步骤如下:1设Np=N(0)

(1)设qt=q(0)(qt为t时段发电流量);

(2)Vt=Vt-1 (Qtqt)t(当VtV兴 V死,取Vt=V兴 V死)

(3)由V均=(Vt Vt-1)/2查水位库容曲线得到Z上;由qt查坝址下游水位流量关系曲线得到Z下;

(4)Nt=Kqt(Z上Z下)

(5)若|NtNp|1,转下时段;否则qt=q(0) (tNpNt)/K(Z上Z下),转

(2)步骤计算。2求年最小水库蓄水量Ve;3若|VeV死|2,转下一年;否则Np=N(0) K(Z正 Z死)/2Z下(Z死Ve)/T供转

(1)步骤计算。求出各年的供水期平均出力后,据设计保证率可求出Np。

2.3.2计算结果本次设计采用程序计算,各方案具体参数及结果如下:1方案一:正常库容

5.7349亿m3,死库容

1.4002亿m3,XX库容

4.3347亿m3。设计保证出力Np=

4.133万kw。2方案二:正常库容

4.3357亿m3,死库容

1.1353亿m3,XX库容

3.2004亿m3。设计保证出力Np=

3.534万kw。3方案三:正常库容

2.9424亿m3,死库容

8.346亿m3,XX库容

2.1078亿m3。设计保证出力Np=

2.784万kw。4方案四:正常库容

1.8490亿m3,死库容

5.55亿m3,兴利库容

1.294亿m3。设计保证出力Np=

2.146万kw。

2.4水电站必需容量选择必需容量包括工作容量与备用容量两部分。

2.4.1工作容量计算本设计缺少电力平衡的资料,采用经验方法确定工作容量如下(按方案一计算):1保证出力中部分担任航运基荷:N工基=10(万kw)2N峰为担任峰荷工作容量N峰=NpN工基=

4.13310=

3.133(万kw)3按以下关系确定峰荷工作容量N工峰=

3.08N峰7=10

3.50(万kw)4水电站工作容量N工=N工峰N工基=10

3.5010=1

1.350(万kw)

2.4.2备用容量计算本设计电站担任系统负荷用及事故备用容量,各方案取值见表

2.1。表

2.1各方案备用容量表方案120m115m108m100mN备(万kw)XXX

5.2

4.3电站必需工作容量经计算,沅水五强溪水电站各方案必需工作容量见表

2.2。表

2.2各方案必需工作容量表方案120m115m108m100mN工基(万kw)101XXXX1010N工峰(万kw)10

3.50

8.505

6.1

9.54230N工(万kw)1

1.350

9.505

7.1

9.55230N备(万kw)302XXXX2024N必需(万kw)1

4.3501

20.05

9.195

6.730

2.5水电站调度图绘制本次毕业设计要求从兴利要求出发对水电站调度要求作两条线,一条是基本调度线防破坏线;一条是加大出力辅助线。

2.5.1防破坏线防破坏线按下列步骤计算确定。1择设计保证率范围内的径流系列(新系列)资料。(从原始系统中剔除来水小于设计枯水年的年份)2年从供水期水期末开始,按Np等出力逆时序操作,求得各年迟蓄方案水库蓄水量过程线。具体求解方程组:Vt-1=Vt(Qtqt)tNp=KqtHt式中符号意义同前。其具体求解流程如下:

(1)设qt=q(0);

(2)Vt-1=Vt(Qtqt)t(Vt起始值为V死)(当Vt-1V死,取Vt-1=V死);

(3)V均=(Vt Vt-1)/2查水库水位库容曲线得到Z下;

(4)Nt=Kqt(Z上Z下);

(5)若|NtNp|,转前时段,否则qt=q(0) (NpNt)/K(Z上Z下),转步骤3将各年迟蓄方案水库蓄水量过程线点在一张图,并取其外包线,即为防破坏线。此外包线,实际上是各条蓄水量过程线的同时纵坐标最大值,在具体操作时,可在计算机算完第步后,直接给出外包线各点坐标,当然最后采用值,还应输出结果作适当分析修正,使防破坏线更可靠。经采用程序计算,各方案防破坏线的结果见表

2.3。表

2.3各方案防破坏线计算结果表月份水库蓄水量(m3/s.月)方案一方案二方案三方案四3

7.166

8.541

8.5331

4.XXX

5.5331

4.4291

3.21

6.XXX

7.67665

9.2513

7.39

9.218XXXX2612

4.328960.

9.XXX

5.86721

8.17416

30.32

9.88

8.XXX

4.91415

5.593

9.73695

6.557921

8.3441

7.26511

5.645

6.627310

2.9041

6.310811

4.13270

3.961XXXX1440.75

9.740963

9.541215

8.72412

6.413

8.6324

5.453XXXX1260.19100

5.46

7.9

5.432XXXX3210

1.532

8.24855

8.91240

6.143

5.5331

4.4291

3.21

6.32182

2.2

5.2防洪限制水位确定防洪限制水位是体现防洪与兴利相互结合的重要参数。选择恰当,可在不影响兴利可靠性前提下,降低大坝高度,节省投资。本设计以获得最大结合库容为原则选择。根据五强溪水电站洪水资料分析,该库洪水最迟发生在月底,月初:故防洪限制水位取值为月底,月初防洪线上的坐标值。经计算并查水库水位库容曲线,各方案防洪限制水位和相应库容分别为:方案一:防洪限制水位为1

20.00m,库容为

5.7349亿m3;方案二:防洪限制水位为1

1.500m,库容为

4.367亿m3;方案三:防洪限制水位为10

5.99m,库容为

2.649亿m3;方案四:防洪限制水位为

9.567m,库容为

1.402亿m3。防洪限制水位作为调洪演算的起调水位,并据此可求出结合库容。

2.5.3加大出力辅助线的绘制在防破坏图中,在汛期防洪限制水位与破坏线间,为加大出力区,但加大出力范围较大,为减少操作的任意性,在该区中增加三条辅助线,采用简化的方法确定该组辅助线。具体如下:Zit=Z死 (Z防限Z死)i/4式中:Zit为第i条加大出力线t时刻的坐标。经计算各方案结果见表

2.4。表

2.4各方案加大出力辅助线参数表正常水位120m115m108m100m死水位(m)

9.552

9.221

8.75

9.8234汛限水位(m)1

20.001

1.50010

5.99

9.567Z1t(m)10

1.64

9.792

9.21

9.8567Z2t(m)10

7.7610

3.63

9.67

9.7901Z3t(m)1

1.38810

9.3310

1.39

9.234V1t(亿m3)

20.4

5.162

9.112

5.711V2t(亿m3)

2.8

9.4230

4.151

8.905V3t(亿m3)

4.14

8.3214

20.1

2.1136由表

2.4绘出加大出力辅助线。三条辅助线将加大出力值计算公式如下:Ni=Np (NyNp)4i各方案计算结果见表

2.5。表

2.5各方案加大出值计算表正常水位120m115m108m100mNp(万kw)

4.133

3.53

4.27

8.42146Ny(万kw)1

4.3501

2.6051

20.12

6.730N1(万kw)

6.6

8.XXX.91

3.292N2(万kw)

9.24280.70

7.3

9.84438N3(万kw)1

1.79610

3.37

9.705

5.5

8.426重复容量选择与多年平均电能计算

2.6.1重复容量选择水电站在洪水期往往会产生大量弃水,为了利用弃水增发季节性电能,节省火电站的燃料消耗,增加一部分装机容量,由于它不能替代火电站的工作容量,因而称它为重复容量。本次设计N重采用经济利用小时数h经济=2500h。补充千瓦利用小时数计算是确定重复容量的关键,但其核心是计算不同重复容量的多年平均电能,多年平均电能的计算与调度图或调度规划有关,本次设计调度按以下规则操作:1当时段初水位位于防破坏线内时,时段出力Nt=Np。2汛期时段初水位位于加大出力区时,按加大出力线工作,即Nt=Ni。3段初水位在防破坏线以上时,使时段水位尽可能向防破坏线上靠,同时要考虑装机容量的限制。4当满装机发电,且水位超过Z防限或Z正时,才允许弃水。现以方案一计算重复容量的选择及多年平均电能计算。假设重复容量N重等于0、

5、

10、1

5、20万kw时,分别计算新系列多年平均发电量E及重复容量年利用小时数h,计算结果见表

2.6。因重复容量年利用小时数h均小于h经济=2500h,故方案一重复容量为0。表

2.6重复容量计算表(方案一)必需容量(万kw)重复容量(万kw)装机容量(万kw)多年平均发电量(亿kw.h)年发电量差值(亿kw.h)E利用小时数(h)1

4.35001

4.350

7.5241

4.35051

4.850

7.62

4.100XXXX0001

4.350101

5.350

7.72

5.101XXXX0231

4.350151

5.850

7.8

3.110XXXX1201

4.350201

6.350

6.92

10.901800其余三个方案的多年平均发电量E及重复容量年利用小时数h计算结果见表

2.7表

2.9。从表

2.9可以看出,方案四的重复容量年利用小时数h均小于h经济=2500h,故方案四重复容量为0。根据表

2.7和表

2.8中计算结果,点绘N重h利曲线,再根据h经济=2500h确定方案二N重=6万kw;方案三N重=

2.817万kw。表

2.7重复容量计算表(方案二)必需容量(万kw)重复容量(万kw)装机容量(万kw)多年平均发电量(亿kw.h)年发电量差值(亿kw.h)E利用小时数(h)1

20.0501

20.05

5.9151

20.0521

2.205

5.96

10.XXX

20.0541

2.40570.1

20.XXX

20.0561

2.60570.6

20.XXX

20.0581

2.805

7.1040.422100表

2.8重复容量计算表(方案三)必需容量(万kw)重复容量(万kw)装机容量(万kw)多年平均发电量(亿kw.h)年发电量差值(亿kw.h)E利用小时数(h)

9.1950

9.195

5.867

9.XXX

1.95

6.20

7.XXX

9.195201

1.195

6.63

5.XXX

9.195301

2.195

6.8

6.322XXXX2280

9.195401

3.19570.

6.420XXXX2024表

2.9重复容量计算表(方案四)必需容量(万kw)重复容量(万kw)装机容量(万kw)多年平均发电量(亿kw.h)年发电量差值(亿kw.h)E利用小时数(h)

6.7300

6.730

3.43

7.67302

5.930

3.48

10.442200

6.7304

7.130

3.52

30.422100

6.7306

7.330

3.56

30.402000

6.730

8.7530

3.60

10.381900

2.6.2装机容量的确定装机容量由必须容量和重复容量确定,但由于回水对上游风滩电站的影响,应在方案一和方案二中扣除风滩电站的多年平均减少电能。各方案的装机容量分别为:方案一:Ny=N必 N重=1

4.350 0=1

4.350万kw;方案二:Ny=N必 N重=1

20.05 6=1

2.605万kw;方案三:Ny=N必 N重=

9.195

2.817=1

20.12万kw;方案四:Ny=N必 N重=

6.730 0=

6.730万kw。

2.6.3多年平均电能计算利用上述计算结果点绘Ny(Ny=N必 N重)E的关系图,查得各方案多年平均发电量。方案一:E=

7.5240.228=

7.5012亿kw.h;方案二:E=70.620=70.62亿kw.h;方案三:E=

6.829亿kw.h;方案四:E=

3.437亿kw.h;3防洪计算

3.1水库调洪计算五强溪水库工程等别为一等,按P=0.1%洪水标准设计、P=0.01%洪水标准校核。水库下游防洪标准为P=5%,安全泄洪量q安=20000m3/s。本次设计防洪计算的任务包括上述三种洪水标准的调洪计算。利用五强溪水库入库典型洪水,调洪计算采用多级调节方法,具体的调洪规则如下:1起调水位为汛前限制水位。2当水库洪水流量小于汛前限制水位相应的下泄能力,且小于安全泄量时,控制闸门,让泄流量等于来水量水库水位维持在汛期水位不变。3当水库入流量超过汛前限制水位相应的下泄能力,而小于下游安全泄量时,打开闸门自由泄流,水库水位上升,下泄量随之增大。4当自由泄流量超过安全泄量时,控制qt=q安,直至调节计算结束,所得最高水位为防洪高水位。5当水库水位不及防洪高水位时,控制qt=q安,当水库水位升高至防洪高水位时,闸门全开,自由泄流,得调洪后的最高水位。溢洪设备的选择本身是一个经济问题,它是权衡上下游洪灾损失的重要参数,而且泄洪设备还受材料最大应力强度及闸门结构限制、下游岩基状况及消能设备情况的影响。自由泄流时采用公式:Q=

1.77n

(1);、若|q(0)q

(1)|,转下时段,否则假定q(0)=q

(1)重新进行计算。、确定防洪高水位、设计洪水位及校核洪水位,确定相应库容。各方案水库调洪计算结果见表

3.1。各方案水库调洪计算详细结果见附表。表

3.1水库各方案调洪计算成果表项目单位方案一方案二方案三方案四正常蓄水位m120XXXX8100正常库容亿m3

5.734

9.4335

7.2942

4.18490汛限水位m120XXXX1510

5.99

9.567汛限库容亿m3

5.734

9.4335

7.264

9.1402死水位m

9.552

9.221

8.75

9.823

预览已结束,下载原文档直接使用
查看全文
若对以上有内容有疑问请反馈或举报举报
声明:
您购买的是此内容的word文档,付费前可通过免费阅读辨别合同。非质量问题不退款,如需帮助可咨询客服【客服微信】